

Fig. 1. Molecular structure and numbering scheme for the two molecules in the asymmetric unit of $\mathrm{Et}_{3} \mathrm{PAuCl}$ (ORTEPII, Johnson, 1971).
eters in Table 2* and the numbering scheme used is shown in Fig. 1, which was drawn with ORTEPII (Johnson, 1971) at 15% probability ellipsoids.

Related literature. Metal phosphines, in particular gold phosphine complexes, have useful medicinal properties

[^0](Berners-Price \& Sadler, 1987; Parish \& Cottrill, 1987). $\mathrm{Et}_{3} \mathrm{PAuCl}$, which is known to interact with DNA (Mirabelli, Sung, Zimmerman, Hill, Mong \& Crooke, 1986), has a similar coordination geometry to that reported for the triphenylphosphine analogue $\mathrm{Ph}_{3} \mathrm{PAuCl}$ (Baenziger, Bennett \& Soboroff, 1976).
G. A. Koutsantonis is thanked for the gift of $\mathrm{Et}_{3} \mathrm{PAuCl}$. The Australian Research Grants Scheme is thanked for support.

References

Baenziger, N. C., Bennett, W. E. \& Soboroff, D. M. (1976). Acta Cryst. B32, 962-963.
Berners-Price, S. J. \& Sadler, P. J. (1987). Chem. Br. pp. 541-544.
Boer, J. L. de \& Duisenberg, A. J. M. (1984). Enraf-Nonius CAD-4F Diffractometer Software Update, February 1984. Enraf-Nonius, Gröningen and Utrecht, The Netherlands.
Davies, J. A. (1987). Personal communication.
Hamilton, W. C. \& Ibers, J. A. (1974). Editors. International Tables for X-ray Crystallography, Vol. IV, pp. 99, 149. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1971). ORTEPII. Report ORNL-3794, revised. Oak Ridge National Laboratory, Tennessee, USA.
Mirabelll, C. K., Sung, C.-M., Zimmerman, J. P., Hill, D. T., Mong, S. \& Crooke, S. T. (1986). Biochem. Pharmacol. 9, 1427-1433.
Parish, R. V. \& Cottrill, S. M. (1987). Gold Bull. 20, 3-12.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Snow, M. R. \& Tiekink, E. R. T. (1988). Acta Cryst. B44, 676-677.
Stout, G. H. \& Jensen, L. H. (1968). X-ray Structure Determination: A Practical Guide, p. 321. New York: Macmillan.
Tiekink, E. R. T., Hoskins, B. F. \& Kurucsev, T. (1989). J. Cryst. Mol. Struct. In the press.

Acta Cryst. (1989). C45, 1234-1236

2,6-Bis(diphenylphosphorylmethyl)pyridine Ethanol Solvate 2.5-Hydrate

By Edward Szlyk,* Ze-Ying Zhang, \dagger Gus J. Palenik, Ruth C. Palenik and Sam O. Colgate
Center for Molecular Structure, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA

(Received 13 September 1988; accepted 21 February 1989)

Abstract

C}_{31} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{P}_{2} \cdot \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O} .2 \cdot 5 \mathrm{H}_{2} \mathrm{O}, M_{r}=598.62\), monoclinic, $P 2_{1} / c, a=9.392$ (3), $b=18.903$ (6), c $=17.736$ (6) $\AA, \quad \beta=96.81$ (3) ${ }^{\circ}, \quad V=3127$ (2) \AA^{3}, Z $=4, \quad D_{x}=1.272 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Мо $K \alpha)=0.71069 \AA, \quad \mu$

^[* Permanent address: Institute of Chemistry, N. Copernicus University, 87-100 Torun, Poland. \dagger Permanent address: Department of Chemistry, Peking University, Beijing 100871, People's Republic of China.]

$=1.75 \mathrm{~cm}^{-1}, F(000)=1268, T=299 \mathrm{~K}$, final $R=$ $0.073, w R=0.077$ for 1569 reflections. The title compound results from the reaction of the corresponding phosphine with $\mathrm{Au}_{2} \mathrm{Cl}_{6}$. The bond lengths are normal.

Experimental. The ligand 2,6-bis(diphenylphosphinomethyl)pyridine, PCpyCP, was prepared by a modification of the synthesis reported by Dahlhoff \& Nelson

Table 1. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters $\left(\AA^{2} \times 10^{3}\right)$

	x	y	z	U^{*}
N	7819 (8)	1190 (5)	963 (5)	41 (3)
C(1)	7607 (10)	1078 (6)	1697 (6)	46 (4)
C(2)	7830 (12)	1632 (7)	2219 (7)	59 (5)
C(3)	8224 (12)	2279 (7)	1963 (7)	58 (5)
C(4)	8431 (11)	2384 (6)	1211 (8)	58 (5)
C(5)	8233 (11)	1829 (7)	722 (6)	50 (4)
$\mathrm{C}(1 a)$	7106 (10)	368 (6)	1901 (5)	47 (4)
$\mathrm{P}(1)$	5224 (3)	231 (2)	1587 (2)	41 (1)
C (11)	4696 (8)	797 (4)	2995 (4)	62 (5)
C(12)	3778	1078	3480	92 (7)
C(13)	2360	1235	3205	93 (7)
C(14)	1860	1109	2445	89 (6)
C(15)	2778	828	1959	71 (5)
C(16)	4196	671	2234	50 (4)
C(11)	4676 (9)	-984 (5)	2399 (4)	71 (6)
$\mathrm{C}\left(12^{\prime}\right)$	4490	-1713	2463	79 (6)
$\mathrm{C}\left(13^{\prime}\right)$	4599	-2151	1839	77 (6)
$\mathrm{C}\left(14^{\prime}\right)$	4894	-1860	1152	67 (5)
$\mathrm{C}\left(15^{\prime}\right)$	5080	-1131	1088	48 (4)
$\mathrm{C}\left(16^{\prime}\right)$	4971	-693	1712	46 (4)
C(5a)	8505 (10)	1870 (6)	-112 (5)	47 (4)
$\mathrm{P}(2)$	10323 (3)	1563 (2)	-208 (2)	44 (1)
$\mathrm{C}(21)$	11320 (8)	1840 (4)	-1601 (4)	59 (5)
C (22)	11408	1701	-2367	78 (6)
$\mathrm{C}(23)$	10546	1179	-2742	60 (5)
$\mathrm{C}(24)$	9595	796	-2352	80 (6)
C(25)	9508	935	-1586	68 (5)
C(26)	10370	1457	-1211	44 (4)
$\mathrm{C}\left(21^{\prime}\right)$	12918 (10)	2047 (4)	439 (5)	67 (5)
C(22')	13936	2557	695	87 (6)
$\mathrm{C}\left(23^{\prime}\right)$	13592	3274	627	92 (7)
$\mathrm{C}\left(24^{\prime}\right)$	12230	3481	303	88 (6)
C(25')	11212	2971	47	65 (5)
$\mathrm{C}\left(26^{\prime}\right)$	11555	2255	115	53 (5)
$\mathrm{O}(1)$	4849 (6)	465 (4)	795 (3)	43 (2)
$\mathrm{O}(2)$	10625 (7)	894 (4)	221 (4)	51 (3)
$W(1)$	7562 (7)	144 (4)	5 (4)	58 (3)
$W(2)$	8895 (50)	310 (16)	5713 (11)	262 (25) \dagger
$W(3)$	6739 (35)	685 (16)	5836 (13)	171 (15) \dagger
$W(4)$	5622 (28)	131 (17)	4840 (20)	206 (19) \dagger
$\mathrm{C}\left(1^{\prime}\right)$	8861 (13)	459 (7)	3845 (5)	69 (5)
$\mathrm{C}\left(2^{\prime}\right)$	8118 (12)	1134 (7)	4105 (6)	64 (5)
O^{\prime}	7340 (15)	1513 (7)	4493 (8)	172 (7)

* Equivalent isotropic U defined as one-third of the trace of the orthogonalized $U_{i j}$ tensor.
\dagger Site-occupancy factor of 0.5 .
(1971). The PCpyCP ligand (1.2 mmol) in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ was cooled in ice and $\mathrm{Au}_{2} \mathrm{Cl}_{6}(0.30 \mathrm{mmol})$ in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ was added slowly. After several recrystallizations from $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, crystals suitable for an X-ray study were obtained. A colorless crystal, $0.27 \times 0.13 \times 0.11 \mathrm{~mm}$, was used. The X-ray data were measured using a Nicolet $R 3 m$ diffractometer with Mo $K \alpha$ radiation and a graphite monochromator. Cell constants were determined from 25 reflections in the 2θ range $6 \cdot 7-19.4^{\circ}$. One set of data was collected at a $4^{\circ} \mathrm{min}^{-1}$ scan rate, a second set at a variable scan rate of $2.0-$ $29.3^{\circ} \mathrm{min}^{-1}$. The 2θ range was $2 \cdot 0-45 \cdot 0^{\circ}$ corresponding to $h k l$ values of 0 to 12,0 to 22 and -21 to 21 , respectively. $R_{\text {merge }}$ was 0.013 for the 4128 unique reflections; 1578 reflections with $F_{o} \geq 6 \sigma\left(F_{o}\right)$ were used in the analysis. No absorption corrections were applied because of the small value of μ. Two standard reflections measured after every 98 reflections dropped by 8% over the time used to measure the two data sets. A decay correction curve was derived from the two standard reflections and applied to the data. A trial structure was obtained by direct methods and refined

Table 2. Bond lengths (\AA), bond angles $\left({ }^{\circ}\right)$ and torsion angles $\left({ }^{\circ}\right)$

$W(4)-W(4 a) \quad 1.446$	1.446 (61)	$\mathrm{O}^{\prime}-\mathrm{C}\left(2^{\prime}\right) \quad 1.281$	1.281 (19)
$\mathrm{N}-\mathrm{C}(1) \quad 1.357$	1.357 (14)	$\mathrm{N}-\mathrm{C}(5) \quad 1.353$	1.353 (15)
$\mathrm{C}(1)-\mathrm{C}(2) \quad 1.397$	1.397 (17)	$\mathrm{C}(1)-\mathrm{C}(1 a) \quad 1.481$	1.481 (16)
$\mathrm{C}(2)-\mathrm{C}(3) \quad 1.371$	1.371 (18)	$\mathrm{C}(3)-\mathrm{C}(4) \quad 1.385$	1.385 (18)
$\mathrm{C}(4)-\mathrm{C}(5) \quad 1.361$	1.361 (17)	$\mathrm{C}(5)-\mathrm{C}(5 a) \quad 1.531$	1.531 (15)
$\mathrm{C}(1 a)-\mathrm{P}(1) \quad 1.808$	1.808 (10)	$\mathbf{P}(1)-\mathrm{C}(16) \quad 1.790$	1.790 (8)
$\mathrm{P}(1)-\mathrm{C}\left(16^{\prime}\right) \quad 1.780$	1.780 (9)	$\mathrm{P}(1)-\mathrm{O}(1) \quad 1.474$	1.474 (6)
$\mathrm{C}(5 a)-\mathrm{P}(2) \quad 1.83 \mathrm{I}$	1.831 (10)	$\mathbf{P}(2)-\mathrm{C}(26) \quad 1.797$	1.797 (8)
$\mathbf{P}(2)-\mathbf{C}\left(26^{\prime}\right) \quad 1.794$	1.794 (9)	$\mathrm{P}(2)-\mathrm{O}(2) \quad 1.485$	1.485 (7)
$\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)-\mathrm{O}^{\prime} \quad 157$	157.7 (12)	$\mathrm{C}(1)-\mathrm{N}-\mathrm{C}(5) \quad 12$	121.5 (9)
$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(2) \quad 11$	119.4 (10)	$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(1 a) \quad 11$	117.6 (9)
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(1 a) \quad 123$	123.0 (10)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3) \quad 118$	118.4 (11)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4) \quad 12$	121.4 (11)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5) \quad 118$	118.7 (11)
$\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(4) \quad 12$	120.6 (11)	$\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(5 a) \quad 11$	116.0 (10)
$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(5 a) \quad 123$	123.4 (11)	$\mathrm{C}(1)-\mathrm{C}(1 a)-\mathrm{P}(1) \quad 11$	112.5 (7)
$\mathrm{C}(1 a)-\mathrm{P}(1)-\mathrm{C}(16) \quad 108$	108.5 (4)	$\mathrm{C}(1 a)-\mathrm{P}(1)-\mathrm{C}\left(16^{\prime}\right) \quad 10$	104.0 (5)
$\mathrm{C}(16)-\mathrm{P}(1)-\mathrm{C}\left(16^{\prime}\right) \quad 10$	106.6 (4)	$\mathrm{C}(1 a)-\mathrm{P}(1)-\mathrm{O}(1) \quad 11$	111.4 (4)
$\mathrm{C}(16)-\mathrm{P}(1)-\mathrm{O}(1) \quad 112$	112.7 (4)	$\mathrm{C}\left(16{ }^{\prime}\right)-\mathrm{P}(1)-\mathrm{O}(1) \quad 11$	113.1 (4)
$\mathrm{P}(1)-\mathrm{C}(16)-\mathrm{C}(11) \quad 12$	123.6 (2)	$\mathrm{P}(1)-\mathrm{C}(16)-\mathrm{C}(15) \quad 11$	116.1 (2)
$\mathrm{P}(1)-\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right) \quad 122$	$122 \cdot 6$ (2)	$\mathrm{P}(1)-\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right) \quad 11$	117.4 (2)
$\mathrm{C}(5)-\mathrm{C}(5 a)-\mathrm{P}(2) \quad 10$	109.7 (6)	$\mathrm{C}(5 a)-\mathrm{P}(2)-\mathrm{C}(26) \quad 10$	105.1 (4)
$\mathrm{C}(5 a)-\mathrm{P}(2)-\mathrm{C}\left(26^{\prime}\right) \quad 108$	108.2 (5)	$\mathrm{C}(26)-\mathrm{P}(2)-\mathrm{C}\left(26^{\prime}\right) \quad 107$	107.8 (4)
$\mathrm{C}(5 a)-\mathrm{P}(2)-\mathrm{O}(2) \quad 1$	$110 \cdot 2$ (5)	$\mathrm{C}(26)-\mathrm{P}(2)-\mathrm{O}(2) \quad 112$	112.8 (4)
$\mathrm{C}\left(26^{\prime}\right)-\mathrm{P}(2)-\mathrm{O}(2) \quad 112$	112.3 (4)	$\mathrm{P}(2)-\mathrm{C}(26)-\mathrm{C}(21) \quad 12$	121.8 (2)
$\mathrm{P}(2)-\mathrm{C}(26)-\mathrm{C}(25) \quad 118$	118.0 (2)	$\mathrm{P}(2)-\mathrm{C}\left(26^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right) \quad 11$	116.9 (3)
$\mathrm{P}(2)-\mathrm{C}\left(26^{\prime}\right)-\mathrm{C}\left(25^{\prime}\right) \quad 123 \cdot 1$ (3)			
$\mathrm{N}-\mathrm{C}(1)-\mathrm{C}(1 a)-\mathrm{P}(1)$	-75.7	$\mathrm{N}-\mathrm{C}(5)-\mathrm{C}(5 a)-\mathrm{P}(2)$	-83.6
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(1 a)-\mathrm{P}(1)$	(1) 102.5	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(5 a)-\mathrm{P}(2)$	94.4
$\mathrm{C}(1)-\mathrm{C}(1 a)-\mathrm{P}(1)-\mathrm{C}(16)$	(16) -78.5	$\mathrm{C}(5)-\mathrm{C}(5 a)-\mathrm{P}(2)-\mathrm{C}(26)$	168.0
$\mathrm{C}(1)-\mathrm{C}(1 a)-\mathrm{P}(1)-\mathrm{C}\left(16^{\prime}\right)$	(16) $\quad 168.2$	$\mathrm{C}(5)-\mathrm{C}(5 a)-\mathrm{P}(2)-\mathrm{C}\left(26^{\prime}\right)$	-77.0
$\mathrm{C}(1)-\mathrm{C}(1 a)-\mathrm{P}(1)-\mathrm{O}(1)$	(1) 46.0	$\mathrm{C}(5)-\mathrm{C}(5 a)-\mathrm{P}(2)-\mathrm{O}(2)$	$46 \cdot 2$
$\mathrm{C}(1 a)-\mathrm{P}(1)-\mathrm{C}(16)-\mathrm{C}(11)$	C(11) -27.1	$\mathrm{C}(5 a)-\mathrm{P}(2)-\mathrm{C}(26)-\mathrm{C}(21)$	119.4
$\mathrm{C}(1 a)-\mathrm{P}(1)-\mathrm{C}(16)-\mathrm{C}(15)$	C(15) 159.2	$\mathrm{C}(5 a)-\mathrm{P}(2)-\mathrm{C}(26)-\mathrm{C}(25)$	-65.8
$\mathrm{C}\left(16^{\prime}\right)-\mathrm{P}(1)-\mathrm{C}(16)-\mathrm{C}(11)$	C(11) 84.4	C(26^{\prime})-P(2)-C(26)-C(21)	$4 \cdot 1$
$\mathrm{C}\left(16^{\prime}\right)-\mathrm{P}(1)-\mathrm{C}(16)-\mathrm{C}(15)$	C(15) -89.3	$\mathrm{C}\left(26^{\prime}\right)-\mathrm{P}(1)-\mathrm{C}(26)-\mathrm{C}(25)$	178.9
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(16)-\mathrm{C}(11)$	(11) -150.9	$\mathrm{O}(2)-\mathrm{P}(2)-\mathrm{C}(26)-\mathrm{C}(21)$	-120.5
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}(16)-\mathrm{C}(15)$	(15) -35.3	$\mathrm{O}(2)-\mathrm{P}(2)-\mathrm{C}(26)-\mathrm{C}(25)$	54.3
$\mathrm{C}(1 a)-\mathrm{P}(1)-\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	C(11') 86.1	$\mathrm{C}(5 a)-\mathrm{P}(2)-\mathrm{C}\left(26^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)$	149.4
$\mathrm{C}(1 a)-\mathrm{P}(1)-\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	C(15') -93.8	$\mathrm{C}(5 a)-\mathrm{P}(2)-\mathrm{C}\left(26^{\prime}\right)-\mathrm{C}\left(25^{\prime}\right)$	-31.3
$\mathrm{C}(16)-\mathrm{P}(1)-\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	C(11') -28.4	$\mathrm{C}(26)-\mathrm{P}(2)-\mathrm{C}\left(26^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)$	-97.4
$\mathrm{C}(16)-\mathrm{P}(1)-\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	C(15') $\quad 151.6$	$\mathrm{C}(26)-\mathrm{P}(2)-\mathrm{C}\left(26^{\prime}\right)-\mathrm{C}\left(25^{\prime}\right)$	81.9
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(11^{\prime}\right)$	C(11') -152.8	$\mathrm{O}(2)-\mathrm{P}(2)-\mathrm{C}\left(26^{\prime}\right)-\mathrm{C}\left(21^{\prime}\right)$	27.5
$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{C}\left(16^{\prime}\right)-\mathrm{C}\left(15^{\prime}\right)$	C(15') $\quad 27.2$	$\mathrm{O}(2)-\mathrm{P}(2)-\mathrm{C}\left(26^{\prime}\right)-\mathrm{C}\left(25^{\prime}\right)$	-153.2

Fig. 1. A view of the 2,6-bis(diphenylphosphorylmethyl)pyridine molecule showing the atomic numbering and 50% thermal ellipsoids. The H atoms are not included for clarity. The four phenyl rings were treated as rigid bodies.
(on F) by blocked-cascade least-squares methods. A difference Fourier synthesis revealed a poorly defined ethanol molecule, together with several other large peaks. The isolated large peaks were assigned to one ordered and three disordered water molecules with occupancy factors of 0.5 . These were included in the subsequent least-squares cycles. The weighting scheme
was $w=\left[\sigma^{2}\left(F_{o}\right)+g F_{o}^{2}\right]^{-1}$, where $g=3.37 \times 10^{-3}$. The final values of R and $w R$ were 0.073 and 0.077 , respectively. The largest shift/e.s.d. in the last cycle was $0 \cdot 235$. A final difference Fourier synthesis had a maximum peak of 0.54 and a minimum of $-0.50 \mathrm{e} \AA^{-3}$ and was featureless. All calculations were carried out using the SHELXTL program (Sheldrick, 1986) on a Data General Eclipse Model 30 computer. The scattering factors used in the SHELXTL program are the analytical form given in International Tables for X-ray Crystallography (1974). The final atomic coordinates are given in Table 1.* Selected bond lengths, bond angles and torsion angles are given in Table 2. The molecule with the atomic numbering scheme is shown in Fig. 1. The poorly defined solvent molecules are probably related to the decrease in the standard reflections during data collection. The result is a somewhat higher R value.

[^2]Related literature. The $\mathrm{P}-\mathrm{O}$ distances of 1.474 (6) and 1.485 (7) \AA are similar to the $\mathrm{P}-\mathrm{O}$ distances in triphenylphosphine oxide (Brock, Schweizer \& Dunitz, 1985) and related species (Bye, Schweizer \& Dunitz, 1982). The various $\mathrm{P}-\mathrm{C}, \mathrm{C}-\mathrm{C}$ and $\mathrm{C}-\mathrm{N}$ distances are similar to those reported in other phosphinomethylpyridines by McNair \& Pignolet (1986).

We thank the Florida High Technology and Industrial Council for financial support.

References

Brock, C. P., Schwelzer, W. B. \& Dunitz, J. D. (1985). J. Am. Chem. Soc. 107, 6964-6970.
Bye, E., Schweizer, W. B. \& Dunitz, J. D. (1982). J. Am. Chem. Soc. 104, 5893-5898.
Dahlhoff, W. V. \& Nelson, S. M. (1971). J. Chem. Soc. A, pp. 2184-2190.
International Tables for X-ray Crystallography (1974). Vol. IV, pp. 99-101. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
McNair, R. J. \& Pignolet, L. H. (1986). Inorg. Chem. 25, 4717-4723, and references therein.
Sheldrick, G. M. (1986). Desktop SHELXTL. Nicolet XRD Corporation, Madison, Wisconsin, USA.

Acta Cryst. (1989). C45, 1236-1239

Tetraphenylphosphonium Chloride Monohydrate, Tetraphenylphosphonium Bromide and Tetraphenylphosphonium Iodide

By Edward E. Schweizer, Cynthia J. Baldacchini and Arnold L. Rheingold*
Department of Chemistry, University of Delaware, Newark DE 19716, USA

(Received 8 November 1988; accepted 3 January 1989)

Abstract. $\left[\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{P}\right] \mathrm{Cl} . \mathrm{H}_{2} \mathrm{O}$, (1), $M_{r}=392.84$, triclinic, $\quad P \overline{1}, \quad a=10.837$ (3), $\quad b=10.996$ (3),$\quad c=$ 18.399 (5) $\AA, \quad \alpha=77.28$ (2),$\quad \beta=76.45$ (2),$\quad \gamma=$ $85.69(2)^{\circ}, V=2078.5(8) \AA^{3}, Z=4,2.0$ molecules/ asymmetric unit, $D_{x}=1.26 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Mo $K \alpha)=$ $0.71073 \AA, \mu=2.7 \mathrm{~cm}^{-1}, F(000)=824, T=296 \mathrm{~K}$, $R_{F}=5.79 \%$ for 3663 reflections and 391 parameters. The two independent cations are chemically indistinguishable, but produce two clearly resolved signals by ${ }^{31} \mathrm{P}$ solid-state NMR spectroscopy owing to small differences in the cation-anion interactions. Although all were prepared and recrystallized identically, only (1), the chloride, acquired adventitious water. Weak hydrogen bonding links the Cl^{-}ions and the water molecules. $\left[\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{P}\right] \mathrm{Br}$, (2), $M_{r}=419.27$, triclinic, $P \overline{1}, \quad a=10.031(3), \quad b=10.688$ (3),$\quad c=$

[^3]0108-2701/89/081236-04\$03.00
10.678 (3) $\AA, \quad \alpha=77.45$ (2),$\quad \beta=83.27$ (2),$\quad \gamma=$ $71.87(2)^{\circ}, \quad V=1060.5(5) \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.31 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda(\mathrm{Mo} K \alpha)=0.71073 \AA, \quad \mu=20.0 \mathrm{~cm}^{-1}$, $F(000)=428, T=296 \mathrm{~K}, R_{F}=5.75 \%$ for 2659 reflections and 198 parameters. $\left[\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{P}\right] \mathrm{I}$, (3), $M_{r}=$ 466.28, tetragonal, $\quad I \overline{4}, \quad a=11.9785$ (14), $\quad c=$ 6.9809 (9) $\AA, \quad V=1001.7(2) \AA^{3}, \quad Z=2, \quad D_{x}=$ $1.55 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda($ Мо $K \alpha)=0.71073 \AA, \mu=16.63 \mathrm{~cm}^{-1}$, $F(000)=464, T=296 \mathrm{~K}, R_{F}=3.68 \%$ for 624 reflections and 81 parameters. A curious feature of these three tetrahedral tetraphosphonium halides is that no two are isomorphous.

Experimental. For (1), colorless crystals from methylene chloride/hexane $(0.36 \times 0.26 \times 0.30 \mathrm{~mm})$; Nicolet $R 3 m$ diffractometer with graphite monochromator; ω scans; lattice parameters from least-squares fit of 25 reflections ($20<2 \theta<25^{\circ}$); an absorption correction (c) 1989 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters, H -atom parameters, and all bond distances and angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51779 (8 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^2]: * Lists of structure factors, anisotropic thermal parameters and H-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51791 (28 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

[^3]: * To whom correspondence should be addressed.

